MicroRNA Regulation of Glycolytic Metabolism in Glioblastoma
نویسندگان
چکیده
Glioblastoma (GBM) is the most aggressive and common malignant brain tumour in adults. A well-known hallmark of GMB and many other tumours is aerobic glycolysis. MicroRNAs (miRNAs) are a class of short nonprotein coding sequences that exert posttranscriptional controls on gene expression and represent critical regulators of aerobic glycolysis in GBM. In GBM, miRNAs regulate the expression of glycolytic genes directly and via the regulation of metabolism-associated tumour suppressors and oncogenic signalling pathways. This review aims to establish links between miRNAs expression levels, the expression of GBM glycolytic regulatory genes, and the malignant progression and prognosis of GBM. In this review, the involvement of 25 miRNAs in the regulation of glycolytic metabolism of GBM is discussed. Seven of these miRNAs have been shown to regulate glycolytic metabolism in other tumour types. Further eight miRNAs, which are differentially expressed in GBM, have also been reported to regulate glycolytic metabolism in other cancer types. Thus, these miRNAs could serve as potential glycolytic regulators in GBM but will require functional validation. As such, the characterisation of these molecular and metabolic signatures in GBM can facilitate a better understanding of the molecular pathogenesis of this disease.
منابع مشابه
The Role of microRNA in Cancer Cachexia and Muscle Wasting: A Review Article
Almost half of cancer patients experience cachexia syndrome. Cachexic patients are at risk of increased side effects of chemotherapy, reduced tolerance to chemotherapy drugs, longer duration of treatment period, and decreased quality of life. Cancer cachexia is a multifactorial syndrome. Micro ribonucleic acid (miRNA), a “non-coding RNA”, is considered to be a risk factor of cachexia and muscle...
متن کاملSensitization of Glioblastoma Cells to Irradiation by Modulating the Glucose Metabolism.
Because radiotherapy significantly increases median survival in patients with glioblastoma, the modulation of radiation resistance is of significant interest. High glycolytic states of tumor cells are known to correlate strongly with radioresistance; thus, the concept of metabolic targeting needs to be investigated in combination with radiotherapy. Metabolically, the elevated glycolysis in glio...
متن کاملRepression of Matrix Metalloproteinases and Cytokine Secretion in Glioblastoma by Targeting K+ Channel: An in Vitro Study
Introduction: Glioblastoma is an aggressive malignancy of human brain with poorly understood pathogenesis. Voltage-gated potassium (Kv) channels and Matrix metalloproteinases (MMPs) are highly expressed in malignant tumors and involved in the progression and metastasis of glioblastoma. The purpose of this study was to determine whether a voltage-dependent potassium channel blocker could modulat...
متن کاملDown-Regulation of CD14 Transcripts in Human Glioblastoma Cell Line U87 MG
Background: Pattern recognition receptors (PRRs) are the main sensors of pathogen and danger signals in innate immunity of which Toll Like Receptors (TLRs) are the most studied ones. The contribution of PRRs in cerebral inflammation induced by microbial infection, tissue damage and cancer has not extensively been addressed so far. Glioma is the most common tumor of the central nervous system an...
متن کاملMetabolic alterations underlying Bevacizumab therapy in glioblastoma cells
Anti-VEGF therapy with Bevacizumab is approved for glioblastoma treatment, however, it is known that tumors acquired resistance and eventually became even more aggressive and infiltrative after treatment. In the present study we aimed to unravel the potential cellular mechanisms of resistance to Bevacizumab in glioblastoma in vitro models. Using a panel of glioblastoma cell lines we found that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017